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The steady laminar flow of a well-mixed suspension of monodisperse solid spheres, 
convected steadily past a horizontal flat plate and sedimenting under the action of 
gravity, is examined. It is shown that, in the limit as Re+m and e+O, where Re is the 
bulk Reynolds number and 8 is the ratio of the particle radius a to the characteristic 
length scale L, the analysis for determining the particle concentration profile has 
several aspects in common with that of obtaining the temperature profile in forced- 
convection heat transfer from a wall to a fluid stream moving at high Reynolds and 
Prandtl numbers. Specifically, it is found that the particle concentration remains 
uniform throughout the O(Re-ll*) thick Blasius boundary layer except for two O(C' /~ )  
thin regions on either side of the plate, where the concentration profile becomes non- 
uniform owing to the presence of shear-induced particle diffusion which balances the 
particle flux due to convection and sedimentation. The system of equations within this 
concentration boundary layer admits a similarity solution near the leading edge of the 
plate, according to which the particle concentration along the top surface of the plate 
increases from its value in the free stream by an amount proportional to with X 
measuring the distance along the plate, and decreases in a similar fashion along the 
underside. But, unlike the case of gravity settling on an inclined plate in the absence 
of a bulk flow at infinity considered earlier (Nir & Acrivos 1990), here the concentration 
profile remains continuous everywhere. For values of X beyond the region near the 
leading edge, the particle concentration profile is obtained through the numerical 
solution of the relevant equations. It is found that, as predicted from the similarity 
solution, there exists a value of Xat which the particle concentration along the top side 
of the plate attains its maximum value $,,, and that, beyond this point, a stagnant 
sediment layer will form that grows steadily in time. This critical value of X is 
computed as a function of q5#, the particle volume fraction in the free stream. In 
contrast, but again in conformity with the similarity solution, for values of X 
sufficiently far removed from the leading edge along the underside of the plate, a 
particle-free region is predicted to form adjacent to the plate. This model, with minor 
modifications, can be used to describe particle migration in other shear flows, as, for 
example, in the case of crossflow microfiltration. 

1. Introduction 
We consider the steady laminar flow of a suspension of sedimenting monodisperse 

solid particles past a horizontal flat plate. Far from the plate, the free-stream velocity 
U,  and particle concentration are both uniform. We also suppose that the particles 
are small enough for their Reynolds number, based on their diameter and either the 
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Stokes sedimentation velocity or the shear rate inside the viscous layer formed near the 
plate, to be very small. 

This flow situation constitutes a fairly general prototype for studying the effect of 
shear-induced particle migration in shear layers. It is also a natural extension of the 
problem considered by Nir & Acrivos (1990) in their study of sedimentation onto an 
inclined plate, in which a concentrated sediment flows along the inclined plate owing 
to gravity. In that case, the shear created within the flowing sediment gives rise to 
shear-induced particle diffusion which opposes the sedimentation flux and prevents the 
particles from accumulating onto the upper surface of the plate. This occurs within a 
thin region close to the wall, termed the viscous layer, where viscous forces are 
balanced by buoyancy. In fact, the structure of that solution has several points in 
common with that of free-convection heat transfer from a vertical plate at high 
Grashof and Prandtl numbers with the notable difference that the particle 
concentration profile is discontinuous across the interface separating the suspension 
from the flowing concentrated sediment. Nir & Acrivos (1990) derived expressions for 
the particle velocity and concentration profiles within this sediment layer on the basis 
of an effective continuum model, valid for very small particle sizes relative to the 
characteristic length scale of the flow, which incorporated the effects of shear-induced 
particle diffusion (Leighton & Acrivos 1986). Their model was recently extended by 
Kapoor & Acrivos (1995) who also tested experimentally a number of theoretical 
predictions pertaining to the thickness of the sediment layer and the corresponding 
particle velocity profiles, and confirmed the theoretical results which were arrived at 
through ab initio calculations that did not entail the use of adjustable parameters. 

In view of the reliability of the effective medium model for buoyancy-driven flow, it 
would be of interest to consider an analogous situation in which forced convection 
plays an important role. In the problem examined here particles sediment onto the 
plate, where they tend to accumulate forming a concentrated sediment. At the same 
time, owing to the interaction between the free stream and the plate, a Blasius-type thin 
shear layer is formed near the plate, which subsequently induces shear-induced particle 
resuspension and thereby reduces their degree of accumulation. In addition, this whole 
process is affected by the presence of convective particle transport. In fact, as will be 
seen, an estimate of the size of the region within which the particle volume fraction 
variation is confined can be obtained simply by balancing the corresponding convective 
and diffusive particle fluxes. 

The present study constitutes a first attempt towards constructing a more 
comprehensive model of particle migration in shear layers which could then be used to 
describe various processes of significant practical interest. Such an example is crossflow 
microfiltration, in which a suspension of neutrally buoyant rigid spherical particles is 
made to flow in a channel having a flat porous bottom surface, under conditions where 
a pressure drop is imposed between the suspension and the permeate side of the 
microporous membrane. Consequently, fluid is sucked through the membrane, 
whereas the particles accumulate along the surface, forming a thin concentrated 
particle layer. Moreover, if this suction velocity is small relative to that in the centre 
of the channel, then, for all practical purposes, the flow within the bulk of the 
suspension is fully developed and is not affected significantly by particle migration. As 
a result, a known tangential shear stress is exerted along the particle layer which, 
together with convection, will determine the concentration profile (Davis & Leighton 
1987). In a different context, the shear-induced diffusion of raindrops as they approach 
an airfoil can affect the structure of the thin water film on its surface whose existence 
may be responsible for the observed loss in efficiency of airfoils under heavy rain and 
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high wind shear (Dunham 1987). Detailed analysis of these two flow situations is left 
for a future investigation ; however, the mathematical and physical similarities between 
them and the problem at hand are fairly evident. 

In $2 the problem is formulated mathematically on the basis of the effective-medium 
model, while in 0 3 the basic equations are reduced to their boundary-layer form. It will 
be seen that the structure of the mathematical system is similar to that which describes 
laminar heat transfer from a flat plate to a fluid stream moving past it at high Reynolds 
and Prandtl numbers. In $4, a similarity solution is constructed valid near the leading 
edge of the plate according to which the particle concentration within the diffusion 
layer approaches smoothly its constant value, q5,, in the adjacent momentum layer 
without experiencing the discontinuity found by Nir & Acrivos (1990) in the absence 
of forced convection. Finally, in $5,  the results of a numerical solution to the 
boundary-layer equations are presented which extend the theory beyond the leading 
edge of the plate. It will be seen that the particle concentration along the top side of 
the plate increases monotonically from its value at the tip, q58, until it reaches its 
maximum possible value, q5,,,, at which point a stagnant layer is formed the thickness 
of which will increase continuously in time. In contrast, along the underside of the 
plate, the particle concentration decreases monotonically until a particle-free region is 
attained. 

2. Problem formulation 
We wish to examine the flow of a suspension of non-colloidal spherical solid particles 

in a viscous fluid convected steadily towards a semi-infinite flat plate, as shown in figure 
1, and sedimenting under the action of gravity. The particles are supposed to be small 
enough that their inertia is negligible. In the following a will denote the particle radius, 
V, the free-stream velocity, and ps, and ,us, respectively, the effective density and 
viscosity of the suspension in the free stream, where the particle volume fraction q5 
equals 9,. The suspension will be modelled as an effective continuum Newtonian fluid 
with concentration-dependent physical properties. 

In this context the volumetric average velocity of the binary mixture is defined as 

where up, u, are the particle and fluid ensemble-averaged velocities at any location in 
the mixture. Owing to the incompressibility of the fluid and of the solid particles, the 
effective suspension density becomes 

(2.2) 
where p, and pp are the pure fluid and solid particle densities respectively and y(q5) is 
the effective density of the mixture rendered dimensionless with ps. Similarly, the 
effective viscosity y(q5) is set equal to y, A($). The equations governing the motion of 
the mixture are rendered dimensionless using L, as yet unspecified, as the characteristic 
length scale, U, = I V,l as the characteristic velocity, and the inertial scale ps U: for the 
pressure. Consequently, following Nir & Acrivos (1990) the continuity and momentum 
equations for the mixture become, respectively, 

u = upq5+uf(l -$), (2.1) 

P(q5) = P , + @ p - P f ) q 5  = PsY(q5), 

v - u  = 0, (2.3) 

and (2 4) 
g9 Gr 
g 2 R e  

Re y(q5) us V u  = -Re V P +  V. [A(@) (Vu + Vu')] +--- (q5 - de), 

where g is the gravitational acceleration. Besides q5s the dimensionless parameters 
characterizing the flow are: the Reynolds number, Re = U,p, L/yu,, the Grashof 
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FIGURE 1 .  Schematic of the flow. 

number, Gr = &,-pf)gp, L3/,uf, and the size ratio E = a / L ;  6 4 1 for the effective- 
medium model to be valid. The hydrostatic pressure, (pP - pr) $8 gy ,  has been 
incorporated into the pressure field P, which now vanishes far from the plate 
(henceforth, x and y will indicate, respectively, the Cartesian coordinates along and 
perpendicular to the plate as shown in figure 1). 

In dimensional form, the total particle flux is given by 

with D, = lVul a2P(#), D, = lVul a2Kc #2, (2.6) 
where lVul = {Vu: VU}'/~ is the norm of the local gradient of the bulk velocity field 
(Leighton & Acrivos, 1987a, b), u* is the particle slip velocity, 

and ,uf is the pure fluid viscosity. The first two terms on the right-hand side in (2.5) 
account for the diffusive flux of the particles due to concentration and shear rate 
gradients, respectively (Leighton & Acrivos 1987~1, b), whereas the last term 
corresponds to the convective flux. In addition, the particle slip velocity, given by the 
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first equality in (2.7), is set equal to the Stokes terminal velocity ut multiplied by a 
hindrance function A#) which accounts for the influence of particle interactions. The 
expression forA#) shown in (2.7) is that used by Nir & Acrivos (1990). The expressions 
given above for D,, D, and u* presuppose that the particle Reynolds number, whether 
in terms of the sedimentation velocity or the local bulk shear rate, is vanishingly small. 

In terms of the dimensionless variables introduced earlier, the steady-state particle 
balance equation becomes 

At the solid boundary, the no-slip condition is applied together with the requirement 
that the total particle flux at the plate be equal to zero, i.e. 

where n is the unit vector normal to the surface. At large distances from the wall the 
flow is uniform and the suspension is well mixed, hence 

u =  u,, # = $bS. (2.10) 
In performing the calculations to be reported below, the relative effective viscosity 

of the mixture was taken to be of the form 

(2.1 1) 

(Leighton & Acrivos 1987b), where #m is the maximum possible particle volume 
fraction in the flowing suspension. Also, following Leighton & Acrivos (1987b), we let 

p(#) = s2(1 +$'.*#) and K, = 0.6. (2.12) 

3. Boundary-layer structure when Re S 1 and E < 1 
We consider the case of uniform flow past a flat plate at zero angle of attack. For 

large values of Re, based on the free-stream velocity U, and the length scale L, an 
O(Re-'I2) vorticity layer is formed near the plate. Above this region, the flow is uniform 
and the suspension is well mixed. Applying the standard Blasius-type boundary-layer 
scaling transformations 

with u and u denoting the longitudinal and transverse velocity components, respectively, 
we obtain, for the continuity, momentum and mass transfer equations, 

U = u, V = vRe'I2, X = x,  Y = yRe'I2, (3.1) 

au av -+- = 0, ax ay 
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as well as the zero-flux condition at the plate, 
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Next, we examine the magnitude of c2 Re3/' which can be rearranged into 

where v8 = ,u8/p8. Now, the term in square brackets is a measure of the shear rate near 
the plate as a result of the existence of a Blasius-type boundary layer, hence the entire 
expression corresponds to the shear particle Reynolds number within the boundary 
layer. As mentioned in the previous section, this was already assumed to be a small 
number in the context of our analysis. Having thus established that c2Re3/2 is very 
small whenever the particle Reynolds number is sufficiently small, we can proceed with 
the analysis in a fashion similar to the case of heat transfer to a fluid stream convected 
past a flat plate at high Re and Pi .  

As E ~ R ~ ~ ~ ~ +  0, particle diffusion, both below and above the plate, is confined within 
a narrow layer attached to the plate which is embedded within the momentum layer as 
Y +  0. But, from the Blasius solution of the momentum boundary-layer equations, we 
know that, as Y+O, U - Y, V - Y 2  (Schlichting 1968), and therefore, by requiring that 
the diffusive terms in (3.5) balance those due to convection, we conclude that the 
thickness of the diffusion layer must be 0 ( ~ ~ / ~ R e l / ~ ) .  This in turn leads to the 
transformations 

so that within the diffusion layer we obtain, respectively, for the momentum and 
continuity equations 

a a 0  
- A($)-- = 0 ( 2 ~ e 3 / 2 ) ,  
a?[ a 4  

and 

(3.9) 

(3.10) 

(3.11) 

In the next section we will see that, in the context of our analysis, e2/3Gr/Re2+0, 
which results in a uniform pressure distribution. Further, in view of (3.9), the shear 
stress remains constant across the diffusion layer and hence shear-induced particle 
diffusion takes place only because of gradients in the particle concentration. In terms 
then of the new coordinates, the particle balance equation becomes 

with boundary conditions 

(3.12) 

(3.13) 
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where the negative F-values denote the region underneath the plate. We note that, in 
contrast to the conventional cases involving mass transfer across boundary layers, here 
the diffusion coefficient, which appears both in the particle balance equation (3.12) as 
well as in the boundary condition (3.14), is proportional to the local shear rate rather 
than being constant. This, as we shall see presently, affects the solution of (3.12) in a 
significant way. 

4. Similarity solution valid near the leading edge of the plate 
As e2/3Gr/Re3/2 + 0 particle transfer due to sedimentation vanishes so that q5 + q5s 

and the Blasius velocity profile applies throughout the boundary layer. Therefore, we 
construct the leading-edge expansion 

Y(X,  f )+ ... 4 = A+Res/2 
s2I3Gr 

which, when substituted into (3.9)-(3.12), yields, to 0 ( ~ ~ / ~ G r / R e ~ / ~ ) ,  

P+fco, Y+O. I 
(4.5) 

We see then that, to this order of approximation, the shear rate within the diffusion 
layer, C#/aP, is everywhere equal to k0.332 X-ll2, as given, for Y+O, by the Blasius 
solution for the corresponding constant-property case. In addition, the term containing 
the settling rate only appears in the boundary condition at the wall. It is this constant 
term in (4.5) that accounts for the increase in the particle concentration within the 
diffusion layer, or for the particle depletion below the plate. 

Letting, then, 

in (4.2)-(4.5), we reduce the problem to a PDE whose form along with its boundary 
conditions suggests the existence of a similarity solution. Indeed, by introducing the 
transformations 

we obtain the ODE 
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FIGURE 2. Similarity solution obtained by solving (4.8) for positive 1. 

with boundary conditions 

(4.9) 

& + O  as q - f foo ,  (4.10) 

which can readily be solved numerically to give F,(r]), shown in figure 2. In addition it 
can easily be seen that 4(q) = -F,( -7) with a discontinuity at q = 0. Also e(0') = 
1.41. 

To a first approximation then, within the diffusion layer, whose thickness relative to 
the length scale L is O(Re-'/z~2/3Re1/2) = O ( E ~ / ~ ) ,  the particle concentration is given by 

(4.1 1) 

implying that, along the top face of the plate, the increase in from its value in the free 
stream is proportional to X5/", whereas, below the plate, $ decreases in a similar 
fashion. It should also be noted that, unlike the similarity solution given by Nir & 
Acrivos (1 990) for sedimentation over an inclined plate, here the particle concentration 
profile inside the diffusion layer, both above and below the plate, approaches 
continuously $,, its value in the undisturbed flow. In fact, an asymptotic analysis of 
(4.8) reveals that, as 7 + f 00, F,(q) - eT7a/36. The reason for this difference in the two 
concentration profiles, is that, in our case, the shear rate remains constant at any given 
X throughout the diffusion layer, whereas in Nir & Acrivos (1990) the corresponding 
shear rate is a monotonically decreasing function of Y and vanishes at infinity. 

Up to this point, the characteristic length scale L used in our analysis has been left 
unspecified. In what follows it proves convenient, however, to choose L such that 

(4.12) 
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(4.13) 

in which case (4.1 1 )  becomes 

$ = $ , + F , ( V ) X ~ / ~ + . . .  as X+O. (4.14) 

We note that if L is chosen according to (4.13), 

(4.15) 

which, for small particles, is normally very small, as required by our analysis. In the 
context of crossflow microfiltration Davis & Sherwood (1990) obtained a similarity 
solution that has some of the characteristics of the one presented here. For instance, 
in their analysis, the thickness of the sheared concentration boundary layer is also 
proportional to X1I3. Of course, their study is different in that they neglect gravity 
settling, they consider fully developed flow in the bulk of the suspension as opposed to 
the Blasius-type vorticity layer considered here, and finally they focus on that portion 
of the membrane where the particles form a thin stagnant sediment layer, cake, with 
concentration $m = 0.58. However, if one focuses on the entrance portion of the 
membrane where the flow is not fully developed and the cake layer has not yet formed, 
$, < $,,,, and provided the transmembrane pressure drop is much larger than the 
down-channel pressure drop, in which case the wall permeation velocity, v,, is taken 
to be constant, it can be seen that, as X+O, a similarity solution exists which is exactly 
the same as the one presented here with L defined such that 

and 

U $8 

~ z* / /"Re~/~  0.332[B($,)]2/3 = " (4.16) 

(4.17) 

Substituting in (4.16) the parameter values used by Davis & Birdsell (1987), 
9, = 0.02, Uw = 3.7 cm s-l, v,  = 3.0 x cm, p = 20 cP, p = 
1.18 g an-/", in their experimental investigation, we obtain L x 2 cm, which conforms 
to the conditions in (4.17). When X- L the similarity solution is not valid and the 
full equations have to be solved; they are only slightly different from the full equations 
derived in the next section to provide the location X,, for which the stagnant cake layer 
forms. This is a very important design parameter as it controls the plugging of the 
channel. 

cm s-l, a = 2 x 

5. Solution valid when X - O(1) 
Introducing the further transformation 

we obtain for the momentum equation (3.9) 

- A($)-= = 0 a!![ :g 
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which, when combined with the asymptotic form of the Blasius solution as Y+O given 
by (4.6), leads to 

on account of the continuity equation. Substituting the above into (3.11)-(3.13), we 
then obtain for the particle concentration equation 

valid for all X ,  subject to the boundary conditions 

with (5.7) 

As X+O the similarity solution can easily be recovered. It is also not difficult to show 
that the first correction to the similarity solution will be of the form F,(q)XLoP. 

Equation (5.5) has to be solved numerically. Moreover, in view of the form of the 
similarity solution as X+ 0, it is useful to rewrite equation (5.5) in terms of 7 = 9/X1/3 
and X, and, in order to avoid large longitudinal derivatives of the concentration near 
X = 0, to introduce 

($-$SIX (5 .8)  

as the dependent variable. The resulting equation is parabolic in X and was discretized 
along then 7-direction using the Galerkin finite element method with the B-cubic 
splines as basis functions. Integration by parts eliminates second-order derivatives and 
increases the accuracy of the method to 0(h3)  where h is the size of the largest element. 
The longitudinal direction Xis a time-like coordinate and the integration is performed 
implicitly via the second-order trapezoidal rule. This gives rise to a set of nonlinear 
algebraic equations that are solved using Newton’s iterations. Unfortunately, because 
a$/aX appears inside the integrand in the second term of ( 5 . 3 ,  the system matrix is 
fully populated and the CPU time increases like N 2 ,  where N is the number of 
unknowns. Typically 4-5 Newton’s iterations were sufficient to reduce the error, 
defined in terms of the Euclidean norm I Yck+l)- YkJ2,  to less than lo-*; Yk denotes the 
kth iterant of the vector of unknown coefficient of the B-spline representation of the 
dependent variable H. The computation was terminated when the particle volume 
fraction reached its maximum value, $,,,, on the top face of the plate, or when it 
vanished at the bottom. The results presented below were checked with respect to mesh 
refinement and are accurate up to, at least, the third significant digit. 
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X 
FIGURE 3. Comparison of the evolution of $-, the particle concentration along the top face of the 
plate, for 4, = 0.2, as obtained via similarity ($,+ 1.41X6/8) and as calculated via the exact solution. 
The computation stops when $- reaches its maximum value $,,,. 

5.1. Results and discussion for the region above the plate 
The numerical solution of (5.5) and (5.6), to be referred to henceforth as the exact 
solution, generates a concentration profile, the shape of which is qualitatively similar 
to that given by the similarity solution. In addition, &, the particle concentration 
along the top side of the plate, is found to increase monotonically from the leading edge 
and to become equal to $m at a value of X which, according to our model, is only a 
function of Beyond this point a steady-state solution of the system of equations 
given above does not exist and a stagnant sediment layer, having a uniform particle 
volume fraction $m, is predicted to form whose width continuously increases in time. 

The evolution of &, the concentration at the top face of the plate, both as predicted 
by the similarity expression, q48 + 1 .41X5I6, and from the exact solution, is shown in 
figure 3 for #s = 0.2. It is seen that the two results agree only up to X = 0.05, thereby 
implying that the range in Xwithin which the similarity solution applies is very limited. 
This interval can be extended by adding to the result of the similarity solution the first- 
order correction, I;a(q = 0) Pop, but even so, with increasing distance from the leading 
edge, the discrepancy between the two sets becomes rapidly more pronounced. Indeed, 
as shown in figure 3, the similarity solution significantly overpredicts the rate of particle 
accumulation on the plate. In addition, in view of ( 4 4 ,  (4.7) and (4.12), we can clearly 
see that the range in X over which the leading-edge solution applies decreases further 
when 9, is reduced. 

On comparing the similarity solution with the exact solution two important factors 
are worth noting. Firstly, the shear-induced diffusion coefficient, ,8($), is larger than 
b($,), which is the value used in the similarity formulation, and this reduces the rate 
of particle accumulation on the plate compared to that predicted by the similarity 
solution. On the other hand, the relative viscosity within the suspension, A($), is larger 
than A(#,) in the exact formulation and consequently the shear rate is smaller, which 
would lead to a higher rate of particle accumulation along the plate. As will be seen 
later, however, the effect of the increase in the shear-induced diffusion coefficient 
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FIGURE 4. Evolution of the particle concentration profile in the region above the plate, as calculated 
via the exact solution at different X-locations downstream. (a) $s = 0.2 and X = 0.4, 0.5,0.64, 0.78, 
0.92; X,, = 0.93 for this value of $#. (b)  $# = 0.05 and X =  0.5, 1 . 1 ,  1.7, 2.5, 3.0, 3.5, 4.0, 4.41, 4.49; 
X,, = 4.5 for this value of $,. 

dominates particle migration near the plate, hence the exact solution leads to smaller 
values for &. 

The above argument loses its validity as the wall concentration approaches the 
maximum value q5m, which is a singular limit in the sense that a very sharp increase in 
the concentration gradient, d$,/dX+oo, is observed. This is a result of the rapid 
increase of the viscosity; A(@) -too as 4 + $m. Consequently, a region of progressively 
smaller shear rates is formed and particles continue to accumulate on the plate as they 
keep sedimenting (figure 3). Once the concentration reaches its maximum value, a 
stagnant sediment layer is predicted to form which will remain attached to the plate 
and grow in time monotonically. In their study of sedimentation over an inclined plate, 
Nir & Acrivos (1990) reached a similar conclusion when the angle of inclination fell 
below a certain threshold value. In the present case then, there exists a critical value of 
the plate length, X,,, decreasing in magnitude with increasing q5s, beyond which a 
steady-state solution of the problem does not exist. It is understood that, in the vicinity 
of the region where q5w = q5m, the presence of the stagnant layer alters the geometry of 
the problem and hence the boundary-layer analysis presented in this study will no 
longer apply. 

Figure 4(a) shows, for #8  = 0.2, the evolution of the concentration profile in the 
region above the plate as predicted by the exact solution. The most important new 
feature of this exact solutions concerns the appearance of an inflection point in the 
concentration profile, which is seen to be moving away from the plate with increasing 
distance from the leading edge. The reason for this is as follows. By evaluating (5.5) at 

which, when combined with the boundary condition (5.6), gives 

(5.10) 
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But (5.11) 

which decreases with increasing wall concentration, owing to the rapid increase in the 
shear-induced diffusion coefficient with @. Consequently, a8#/i3P2 -c 0 at the plate. But 
since the concentration gradients are everywhere negative and become zero at the edge 
of the diffusion layer, the second derivative of the concentration profile must become 
positive at some distance from the plate, thereby explaining the existence of the 
inflection point. 

Referring to figure 4(a) again, it should be noted that, with increasing X, the 
inflection point moves further away from the plate and that the thickness of the 
diffusion layer, i.e. the distance along the Y-direction over which the particle volume 
fraction decreases from #w to #,, increases faster with X than predicted by the similarity 
solution. In addition, the concentration profile can be viewed as consisting of two 
parts. Within the first, extending between the plate and the inflection point, the 
concentration gradient is relatively small near the plate but increases significantly as 
the inflection point is approached. It will be seen later that in this region the 
sedimentation flux balances shear-induced resuspension, while convection remains 
negligibly small. Consequently, the variation of the particle volume fraction is 
determined primarily by the magnitude of the shear-induced diffusion coefficient. In 
the second region, extending from the inflection point up to the edge of the diffusion 
layer, the concentration gradients decay to zero exponentially fast as # +. #8 far from 
the plate. 

At this point it will be of interest to discuss the predictions of our model as the free- 
stream particle volume fraction, gg, varies between values close to zero and #,,,. The 
evolution of the concentration profile, as computed from the exact solution for #g = 
0.05, is shown in figure 4(b). On comparing this figure with figure 4(a) which applies 
when #8 = 0.2, one can see that the concentration profile remains qualitatively 
unaffected by the variation in #,. On the other hand X,,, the length needed for #w to 
equal #m on the top face of the plate, is significantly larger and the scale in the y- 
direction, over which changes in the concentration take place, is also larger. At the 
same time the concentration gradients far from the plate are larger than those observed 
in figure 4(a). In view of these two effects, and keeping in mind that the numerical 
discretization used in both cases was the same, the numerical error as X+.X,, and in 
the vicinity of the inflection point, where the gradients are the steepest, is very large 
when 4, = 0.05. In fact, it was found that, as # , + O  the quality of the numerical 
solution in this region deteriorated, for the reasons cited above, so that in order to 
improve the accuracy around the inflection point it would have been necessary to 
introduce some form of regriding. This was not pursued in this study, since the 
accuracy of the numerical solution near the wall, where the concentration gradients are 
small, was not affected. Hence, we were able to obtain reliable results for the variation 
of the particle volume fraction at the wall, # w ,  for #g as small as 0.01, 

In view of the difficulties encountered in trying to compute a numerical solution as 
#g + 0, it seems advisable to investigate the asymptotic structure of the solution of the 
exact equations in this limit. Close examination of figures 4(a) and 4(b) reveals that the 
variation of the particle volume fraction in the transverse direction, F, is determined 
primarily through the balance between sedimentation and diffusion in the region near 
the wall. As was already mentioned in the previous paragraph but one, the 
concentration gradient, a#/i3 Y, is small near the wall where the shear-induced diffusion 



314 N .  A. Pelekasis and A .  Acrivos 

coefficient is large, whereas far from the wall a$/aP increases significantly as the 
particle volume fraction, and consequently the shear-induced diffusion coefficient, 
decreases (see also (5.11)). This so-called inner region occupies almost the entire 
sediment layer and determines its thickness. 

In this context, and guided by the behaviour of the numerical solution for small $s, 
we can recover, to leading order, the asymptotic structure of the exact solution as 
$,-to. More specifically, in this limit, we rescale the coordinates within the inner 
region according to 

2 = xqg, f = P${, a, /? > 0, (5.12) 

and express the particle volume fraction, which is an O(1) quantity, by means of 

q5 = G0(f, P) + q58 @,(2, P) + O(&). (5.13) 

We next make use of the exact integral particle balance, as obtained by integrating 
(5.5) across the diffusion layer and from X = 0 to X, 

(5.14) 

plus the fact, guided by the numerical solutions, that within the inner region the 
diffusion and sedimentation terms in (5.5) are of comparable magnitude and dominate 
those due to convection as $,+O. Therefore, on substituting (5.12) and (5.13) into 
(5.14) and (5.5), we conclude that a = 6, /? = and that, within the inner region 0 < 
P z O( l), the particle concentration profile satisfies, as 9, + 0, 

which becomes, on integration, 

(5.15) 

(5.16) 

where use has been made of (5.6), (2.7) and (2.12). The solution of (5.16) is subject to 
the additional constraints that 

with 6 given by 
(5.17) 

(5.18) 

which follows from (5.14) plus (5.12) and (5.13). Note that since 6 is finite, this inner 
solution leads to a discontinuity in the particle concentration gradient at f = 6 which 
can be rendered continuous by constructing an appropriate outer solution, centred 
around f =  6, to be followed by the usual matching procedure. To a first 
approximation, however, the existence of this outer solution does not affect the particle 
concentration distribution within the inner region except in the immediate neigh- 
bourhood of f = 6. 

Figure 5 shows the evolution of the particle concentration profile as given by the 
solution of (5.16) subject to (5.17) and (5.18). The similarity between this graph and 
figure 4(b) is obvious. The close agreement between the asymptotic solution as q5s +. 0 
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p = yqq5 

FIGURE 5. Evolution of the particle concentration profile in the region above the plate as qlculated 
via the zeroth-order asy-mptotic solution as q5,+0, equations (5.17)-(5.19), at different X = Xq5:/p 
@cations downstream: X = 0.0025, 0.007,0.016,0.03,0.051,0.084,0.131,0.195,0.271,0.343,0.369. 
X, = 0.369. 

I I 

0 0.07 0.14 0.21 0.28 0.35 0.42 

R 
FIGURE 6. Comparison of the evolution of the particle concentration along the top face of the plate 
as obtained via the zeroth-order asymptotic solution as + 0 (-), and as calculated via the exact 
solution for different values of q5s: * .  . * . ., 0.2; . . -, 0.1; - a - ,  0.05; ---, 0.02. 

and the numerical solution is further illustrated in figure 6 where &, the particle 
volume fraction at the wall, is seen plotted us. 2 for different values of q58. 

At the opposite extreme, $8+q5,,,, the structure of the solution is easier to capture. 
To begin within, as seen from the evolution of the particle concentration profile with 
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P 
FIGURE 7. Evolution of the particle concentration profile in the region above the plate as calculated 
via the exact solution at different locations downstream: X = 0.004,0.008,0.012,0.016,0.020, 0.024 
for 9. = 0.5. X, = 0.025 for this value of ##. 

X when q5s = 0.5, shown in figure 7, the inflection point remains close to the plate even 
with increasing X. Besides, since X,, is now very small, the similarity solution presented 
in $4 applies over a larger portion of the appropriate range of X than when g58 was 
smaller. This is seen in figure 8 which depicts the variation of &, with X according to 
the two solutions for the same value of $8 = 0.5. Of course, d$,/dX+oo as X-+ X,, 
and hence the deviations from the similarity solution become significant in this region, 
figure 8. The asymptotic behaviour in this limit can be recovered by noting that 

where (5.20) 

are the relevant stretched coordinates in this region. Further, by requiring that all three 
terms in the particle balance equation ( 5 . 9 ,  namely convection, diffusion and 
sedimentation must be retained as $s + q5,, we obtain that a = E ,  #I = i, as well as the 
governing equation for a: 

with 

and 

(5.22) 
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X 
FIGURE 8. Comparison of the evolution of the particle concentration along the top face of the 

plate as obtained via similarity and as calculated via the exact equations for $a = 0.5. 

$8 xcr A xcr A XCT 
0.01 15.000 0.15 1.485 0.50 0.0248 
0.02 9.120 0.20 0.935 0.53 0.0125 
0.05 4.497 0.25 0.580 0.55 0.0060 
0.08 3.000 0.30 0.350 0.57 0.0014 
0.10 2.415 0.40 0.114 0.575 0.0006 

TABLE 1. Length along the top face of the plate needed for q5w to reach its maximum possible 
value, q5, = 0.58, as a function of 

The variation of X,, is depicted in a log-log scale in figure 9 while the numerically 
computed values of X,, are given in table 1. - q5,) is used as the independent 
variable in figure 9 in order to facilitate comparison with the asymptotic results, 
X,, - 0.369q5;4/5 as 9, + 0 and X,, - 0.352 (6, - as q5, + q5m. The factor 0.369 
was obtained by solving (5.16)-(5.18) and corresponds to the value of 2 for which 
@&P= 0) becomes q5m, whereas the factor 0.352 corresponds to the value of 2 for 
which a( f = 0) vanishes and is obtained by fitting the asymptotic result (5.20) in 
the numerically computed values for X,,, given in table 1, in the limit q58+q5m. A 
parameter of some practical interest is the dimensional critical distance from the leading 
edge, x,,, at which q5w = q5m. In view of (4.13), we have that 

(5.23) 

which is a function of only q5, and of the relative density ratio Ap/pr. 
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FIGURE Variation. in a ig-log scale, of the distance from the leading edge along .,e top face of 
the plate at which 4, = 9, as a function of q5,/(q5,-q5J. The continuous curve is produced by 
connecting the numerically obtained values whereas the two broken curves are produced by the 
asymptotic results as + 0 (---), and as 9, + q5, (---). 

10-1 1 ' ' * * l l m * l  ' ' .ml.l.l ' ' * l * lml l  ' ' . l a * l l l  ' ' *LJ 

0 1ce 10-3 1 ~ 2  10-1 loo 

A 
FIGURE 10. Variation of S, as given by (5.24), with for Ap/p ,  = 0.2 (-), and 1.0 (---). 

The product of the last two terms in (5.24) is a montonically decreasing function of 
9, and approaches a constant value when q58-+$,, as expected on account of the 
asymptotic behaviour of the exact equations in this limit derived above. On the other 
hand, since the first term in (5.24) is a rapidly increasing function of q5u, the complete 
expression for S is a monotonically increasing function of q5u, beyond q5u - 0.1, even 
up to $# = &, figure 10. This implies that when the suspension is densely packed, 
shear-induced diffusion is sufficiently dominant to prevent the particles from 
accumulating along the plate even for large distances from the leading edge. It should 
also be noted however that, owing to the difficulty of constructing reliable numerical 
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FIGURE 11. Evolution of the particle concentration profile in the region below the plate, as obtained 
via similarity, (b), and as calculated via the exact equations, (a), at different locations downstream: 
X- 0.008, 0.014, 0.02, 0.026, 0.032 for q5* = 0.2. X, = 0.032 for this value of $*. 

solutions for 9, > 0.575, the curves in figure 10 were generated in this interval by 
multiplying the first two terms of (5.24) with the asymptotic form of the product 
X, h(q58)6/s - 0.352(q5, - q58)6~6h(q5,)6~s. Similarly, since as was explained earlier in this 
section reliable numerical solutions could not be generated for q5, below 0.01, the 
asymptotic expression X, - 0.369q5;4/6 was used in the interval 0 < q5, < 0.01. The 
logarithmic scale used in figure 10 provides a better resolution of the curves near the 
endpoints of the interval 0 < < q5,. Needless to add, as q5# + q5,, the variation of S 
with is very sensitive to the choice of the parameter functions p, f and h used in our 
model. In fact, since the asymptotic forms of these parameters are at present not known 
with any degree of coniidence, the asymptotic results given above are, of course, subject 
to revision as more reliable expressions for 8, f and h become available for high particle 
concentrations. 

5.2. Results and discussion for the region below the plate 
Below the plate and attached to it there is a region, termed the depletion layer, where 
the particle concentration continuously increases from its value at the plate, &, to that 
in the free stream, q5,, owing to the continuous outflux of particles sedimenting towards 
the bulk of the suspension. As a result, the particle volume fraction along the underside 
of the plate, &, decreases from at the leading edge until total depletion is achieved. 
Not surprisingly, near the leading edge, the concentration profiles as predicted by the 
similarity solution and those calculated via the numerical solution of equations 
(5.5H5.6) are in very close agreement. However, as X increases, the particle 
concentration, as obtained from the exact numerical solution, decreases rapidly with 
increasing distance from the wall and quickly reaches the constant value, q5,, at the edge 
of the layer, i.e. the thickness of the depletion layer is smaller than predicted by 
similarity; this behaviour is shown in figure 11 when q5, = 0.2. In addition, as shown 
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FIGURE 12. Comparison of the evolution of the particle concentration along the bottom face of 
the plate as obtained via similarity and as calculated via the exact equations for $a = 0.2. 

I 

' ' ' """ 1 0-2 ' ' ' """ lo-' ' ' J 100 

9 s  
FIGURE 13. Variation, as a function of q58, of the distance from the leading edge along the bottom face 
of the plate at which q5- first vanishes. The continuous curve is produced by connecting the 
numerically calculated values whereas the broken curve corresponds to the asymptotic expression as 
$4 + 0. 

in figure 12, the particle volume fraction at the wall, q5w, decreases with X much more 
rapidly than predicted by the similarity solution. It should also be noted that the 
concentration profiles no longer have an inflection point and that, as q5w --f 0, very large 
normal gradients are observed near the wall accompanied by an unbounded growth of 
the longitudinal gradients; see figures 11 and 12. 

This behaviour can again be explained by an argument similar to that used earlier 
to account for the flow situation above the plate. Specifically, as in that case, the 
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A x c r  $8 xcr 

32 1 

0.0100 0.0013 0.1000 0.0180 
0.0125 0.0017 0.1500 0.0270 
0.0250 0.0038 0.2000 0.0340 
0.0500 0.0090 0.3000 0.0450 

TABLE 2. Length along the bottom face of the plate needed for 9, to vanish, as a function of 4,. 

variation of the diffusion coefficient which is now lower than its constant value, p($,), 
used in the similarity formulation, is the primary factor which determines the evolution 
of the particle volume fraction along the underside of the plate, hence the larger 
particle depletion rate observed in figure 12. Finally, according to (5.10), the second 
derivative of the particle concentration is negative along the plate, and since it remains 
negative throughout the layer this excludes the possibility of having an inflection point. 
Thus the situation is opposite to that in the region above the plate, where the inflection 
point moves away from the plate, and as a result the thickness of the depletion layer 
is smaller than predicted by similarity. 

The distance from the leading edge, Xcr, at which the concentration at the wall first 
vanishes is plotted in figure 13 as a function of $, with the actual numerical values given 
in table 2. A logarithmic scale is chosen to represent the data so that the comparison 
with the asymptotic result as 4, + 0 becomes clearer. Again an asymptotic analysis that 
is uniformly valid within the depletion layer can be constructed as $,+O, and by 
requiring that convection should balance shear-induced diffusion and sedimentation 
it can easily be shown that, in this limit, an O(&/l6) boundary layer forms in the 
F-direction below the plate, that extends an 0($:/5) distance from the leading edge. 
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